Go学习笔记(八):实现Pipe-Filter(管道过滤器)
2020-04-27 22:50:03Pipe-Filter 模式,即管道过滤器模式,这是一种非常经典的架构模式,这种模式与工业制造生产流水线非常类似,就像薯片的生产过程,从土豆的清洗、去皮、切片、烘干、油炸,到最后打包完成,整个生产过程被拆分成了多个环节,每个环节处理完成之后,通过传送带传送到下一个环节的机器。整个生产过程每个环节都是独立的,但又环环相扣,只要有一个环节出问题了,生产出来的薯片就会有质量问题。
适用的场景
- ⾮常适合与数据处理及数据分析系统
- Filter封装数据处理的功能
- Pipe⽤于连接Filter传递数据或者在异步处理过程中缓冲数据流
- 进程内同步调⽤时,pipe演变为数据在⽅法调⽤间传递
- 松耦合:Filter只跟数据(格式)耦合
Filter 和组合模式
23 个经典设计模式里面有一个设计模式叫组合模式,当 Pipe-Filter 遇上组合模式时,多个 Filter 又可以再组合成一个新的 Filter,如下图所示,组合出来的 Filter 接收的数据与第一个 Filter 保持一致,返回的数据与最后一个 Filter 保持一致。通过组合,就可以将多个简单的 Filter 可以组合成一个更复杂的 Filter。应用这一套理论去实践,我们会发现,Filter 既可以做的很轻便,也可以做得很强大。
实例
接下来我们用Go语言实现上图实例:
1.定义filter接口
// Package pipefilter is to define the interfaces and the structures for pipe-filter style implementation
package pipefilter
// Request is the input of the filter
type Request interface{}
// Response is the output of the filter
type Response interface{}
// Filter interface is the definition of the data processing components
// Pipe-Filter structure
type Filter interface {
Process(data Request) (Response, error)
}
2.实现SplitFilter、ToIntFilter和SumFilter
package pipefilter
import (
"errors"
"strings"
)
var SplitFilterWrongFormatError = errors.New("input data should be string")
type SplitFilter struct {
delimiter string
}
func NewSplitFilter(delimiter string) *SplitFilter {
return &SplitFilter{delimiter}
}
func (sf *SplitFilter) Process(data Request) (Response, error) {
str, ok := data.(string) //检查数据格式/类型,是否可以处理
if !ok {
return nil, SplitFilterWrongFormatError
}
parts := strings.Split(str, sf.delimiter)
return parts, nil
}
package pipefilter
import (
"errors"
"strconv"
)
var ToIntFilterWrongFormatError = errors.New("input data should be []string")
type ToIntFilter struct {
}
func NewToIntFilter() *ToIntFilter {
return &ToIntFilter{}
}
func (tif *ToIntFilter) Process(data Request) (Response, error) {
parts, ok := data.([]string)
if !ok {
return nil, ToIntFilterWrongFormatError
}
ret := []int{}
for _, part := range parts {
s, err := strconv.Atoi(part)
if err != nil {
return nil, err
}
ret = append(ret, s)
}
return ret, nil
}
package pipefilter
import "errors"
var SumFilterWrongFormatError = errors.New("input data should be []int")
type SumFilter struct {
}
func NewSumFilter() *SumFilter {
return &SumFilter{}
}
func (sf *SumFilter) Process(data Request) (Response, error) {
elems, ok := data.([]int)
if !ok {
return nil, SumFilterWrongFormatError
}
ret := 0
for _, elem := range elems {
ret += elem
}
return ret, nil
}
3.组合3个Filter
package pipefilter
// NewStraightPipeline create a new StraightPipelineWithWallTime
func NewStraightPipeline(name string, filters ...Filter) *StraightPipeline {
return &StraightPipeline{
Name: name,
Filters: &filters,
}
}
// StraightPipeline is composed of the filters, and the filters are piled as a straigt line.
type StraightPipeline struct {
Name string
Filters *[]Filter
}
// Process is to process the coming data by the pipeline
func (f *StraightPipeline) Process(data Request) (Response, error) {
var ret interface{}
var err error
for _, filter := range *f.Filters {
ret, err = filter.Process(data)
if err != nil {
return ret, err
}
data = ret
}
return ret, err
}
4.测试调用
func TestStraightPipeline(t *testing.T) {
spliter := NewSplitFilter(",")
converter := NewToIntFilter()
sum := NewSumFilter()
sp := NewStraightPipeline("p1", spliter, converter, sum)
ret, err := sp.Process("1,2,3")
if err != nil {
t.Fatal(err)
}
if ret != 6 {
t.Fatalf("The expected is 6, but the actual is %d", ret)
}
}