用Go撸数据结构(一):复杂度分析
2020-05-23 15:33:44最近一直在学习Go语言,因为工作中并没有用到Go,为了不让学到的知识点很快忘掉,我打算用Go语言来撸一遍基本的算法,巩固一下Go语法,也温习一下算法基础。今天是这个系列的第一篇,我们来谈谈什么是复杂度分析。
其实,只要讲到数据结构与算法,就一定离不开时间、空间复杂度分析。而且认为复杂度分析是整个算法学习的精髓,只要掌握了它,数据结构和算法的内容基本上就掌握了一半。
大 O 复杂度表示法
算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间呢?
这里有段非常简单的代码,求 1,2,3…n 的累加和。现在,我就带你一块来估算一下这段代码的执行时间。
func cal(n int) int {
sum := 0
for i := 0; i <= n; i++ {
sum += i
}
return sum
}
从 CPU 的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的 CPU 执行的个数、执行的时间都不一样,但是,我们这里只是粗略估计,所以可以假设每行代码执行的时间都一样,为 unit_time。在这个假设的基础之上,这段代码的总执行时间是多少呢?
第 2 行代码分别需要 1 个 unit_time 的执行时间,第 3、4行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+1)*unit_time。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。
按照这个分析思路,我们再来看这段代码。
func cal(n int) int {
sum := 0
for i := 0; i <= n; i++ {
for j := 0; j <= n; j++ {
sum += i * j
}
}
return sum
}
我们依旧假设每个语句的执行时间是 unit_time。那这段代码的总执行时间 T(n) 是多少呢?
第 2 行代码,每行都需要 1 个 unit_time 的执行时间,第 3 行代码循环执行了 n 遍,需要 n * unit_time 的执行时间,第 4、5 行代码循环执行了 n2遍, 2n2 * unit_time 的执行时间。所以,整段代码总的执行时间 T(n) = (2n2+n+1)*unit_time。
尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。
我们可以把这个规律总结成一个公式。注意,大 O 就要登场了!
我来具体解释一下这个公式。其中,T(n) 我们已经讲过了,它表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。
所以,第一个例子中的 T(n) = O(2n+1),第二个例子中的 T(n) = O(2n2+n+1)。这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。
当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O 表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O(n2)。
时间复杂度分析
- 单段代码看高频:比如循环。
- 多段代码取最大:比如一段代码中有单循环和多重循环,那么取多重循环的复杂度。
- 嵌套代码求乘积:比如递归、多重循环等
- 多个规模求加法:比如方法有两个参数控制两个循环的次数,那么这时就取二者复杂度相加。
几种常见时间复杂度实例分析
O(1)
一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
O(logn)、O(nlogn)
对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。我通过一个例子来说明一下。
i := 1
for i <= n {
i = i * 2
}
return i
根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。
从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:
所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2x=n 求解 x 这个问题我们想高中应该就学过了。x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。
现在,我把代码稍微改下,你再看看,这段代码的时间复杂度是多少?
i := 1
for i <= n {
i = i * 3
}
return i
根据我刚刚讲的思路,很简单就能看出来,这段代码的时间复杂度为 O(log3n)。
实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。为什么呢?
我们知道,对数之间是可以互相转换的,log3n 就等于 log32 * log2n,所以 O(log3n) = O(C * log2n),其中 C=log32 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于 O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。
如果你理解了前面讲的 O(logn),那 O(nlogn) 就很容易理解了。如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。
O(m+n)、O(m*n)
我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。老规矩,先看代码!
func cal(n int, m int) int {
sum_1 := 0
for i := 0; i < m; i++ {
sum_1 = sum_1 + i
}
sum_2 := 0
for j := 0; j < n; j++ {
sum_2 = sum_2 + j
}
return sum_1 + sum_2
}
从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。
针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。
空间复杂度分析
时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。
我还是拿具体的例子来给说明
func print(n int) {
var a = make([]int, n, n)
for i := 0; i < n; i++ {
a[i] = i * i
}
for i := n - 1; i >= 0; i-- {
fmt.Println(a[i])
}
}
跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型切片,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。
我们常见的空间复杂度就是 O(1)、O(n)、O(n2 ),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度,掌握这些内容已经足够了。
复杂度分析的4个概念
- 最坏情况时间复杂度:代码在最理想情况下执行的时间复杂度。
- 最好情况时间复杂度:代码在最坏情况下执行的时间复杂度。
- 平均时间复杂度:用代码在所有情况下执行的次数的加权平均值表示。
- 均摊时间复杂度:在代码执行的所有复杂度情况中绝大部分是低级别的复杂度,个别情况是高级别复杂度且发生具有时序关系时,可以将个别高级别复杂度均摊到低级别复杂度上。基本上均摊结果就等于低级别复杂度。
为什么要引入这4个概念?
- 同一段代码在不同情况下时间复杂度会出现量级差异,为了更全面,更准确的描述代码的时间复杂度,所以引入这4个概念。
- 代码复杂度在不同情况下出现量级差别时才需要区别这四种复杂度。大多数情况下,是不需要区别分析它们的。
如何分析平均、均摊时间复杂度?
- 平均时间复杂度
代码在不同情况下复杂度出现量级差别,则用代码所有可能情况下执行次数的加权平均值表示。 - 均摊时间复杂度
两个条件满足时使用:1)代码在绝大多数情况下是低级别复杂度,只有极少数情况是高级别复杂度;2)低级别和高级别复杂度出现具有时序规律。均摊结果一般都等于低级别复杂度。